Exercise 6

Find an equation of the tangent line to the curve at the given point.

$$
\begin{equation*}
y=x^{3}-3 x+1 \tag{2,3}
\end{equation*}
$$

Solution

Start by finding the slope of the tangent line to the curve at $x=2$.

$$
\begin{aligned}
m=\lim _{x \rightarrow 2} \frac{f(x)-f(2)}{x-2} & =\lim _{x \rightarrow 2} \frac{\left(x^{3}-3 x+1\right)-\left[(2)^{3}-3(2)+1\right]}{x-2} \\
& =\lim _{x \rightarrow 2} \frac{\left(x^{3}-3 x+1\right)-(3)}{x-2} \\
& =\lim _{x \rightarrow 2} \frac{x^{3}-3 x-2}{x-2} \\
& =\lim _{x \rightarrow 2} \frac{(x-2)(x+1)^{2}}{x-2} \\
& =\lim _{x \rightarrow 2}(x+1)^{2} \\
& =(2+1)^{2} \\
& =9
\end{aligned}
$$

The general equation of a line is

$$
y=m x+b
$$

Here the slope is $m=9$.

$$
y=9 x+b
$$

Use the fact that the line passes through $(2,3)$ to determine b.

$$
\begin{gathered}
3=9(2)+b \\
3=18+b \\
b=-15
\end{gathered}
$$

Therefore,

$$
y=9 x-15 .
$$

Below is a plot of the curve and the tangent line at $x=2$.

